WHO, “Global status report on road safety,” 2016. [Online]. Available: http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/. [Accessed: 19-Jun-2017].
WHO, “Road traffic injuries,” 2017. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs358/en/. [Accessed: 19-Jun-2017].
TSI, “Turkish Statistical Institute,” Turkish Statistical Institute, 2017. [Online]. Available: http://www.turkstat.gov.tr/Start.do. [Accessed: 19-Jun-2017].
M. A. Abdel-Aty and A. E. Radwan, “Modeling traffic accident occurrence and involvement” Accid. Anal. Prev., vol. 32, no. 5, pp. 633–42, Sep. 2000.
S. Y. Sohn and H. Shin, “Pattern recognition for road traffic accident severity in Korea,” Ergonomics, vol. 44, no. 1, pp. 107–117, Jan. 2001.
Q. Wu, G. Zhang, X. Zhu, X. C. Liu, and R. Tarefder, “Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways,” Accid. Anal. Prev., vol. 94, pp. 35–45, 2016.
M. Taamneh, S. Alkheder, and S. Taamneh, “Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates,” J. Transp. Saf. Secur., pp. 1–21, Apr. 2016.
E. I. Vlahogianni, M. G. Karlaftis, and F. P. Orfanou, “Modeling the Effects of Weather and Traffic on the Risk of Secondary Incidents,” J. Intell. Transp. Syst., vol. 16, no. 3, pp. 109–117, Jul. 2012.
J. Ona, R. O. Mujalli, and F. J. Calvo, “Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks,” Accid. Anal. Prev., vol. 43, no. 1, pp. 402–411, Jan. 2011.
C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
T. Mitchell, Machine Learning. McGraw-Hill, 1997.
S. Ajmani, K. Jadhav, and S. A. Kulkarni, “Three-Dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation,” J. Chem. Inf. Model., vol. 46, no. 1, pp. 24–31, Jan. 2006.
O. Z. Maimon and L. Rokach, Soft computing for knowledge discovery and data mining. Springer, 2011.
S. Shalev-Shwartz and S. Ben-David, Understanding machine learning : from theory to algorithms. Cambridge: Cambridge University Press, 2014.
M. Chong, A. Abraham, and M. Paprzycki, “Traffic Accident Analysis Using Machine Learning Paradigms,” Informatica, vol. 29, no. 1, pp. 89–98, 2005.
X. Fan, L. Wang, and S. Li, “Predicting chaotic coal prices using a multi-layer perceptron network model,” Resour. Policy, vol. 50, pp. 86–92, Dec. 2016.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer New York, 2009.
M. Taamneh, S. Taamneh, and S. Alkheder, “Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks,” Int. J. Inj. Contr. Saf. Promot., pp. 1–8, Sep. 2016.
D. G. Altman and J. M. Bland, “Statistics Notes: Diagnostic tests 2: predictive values,” BMJ, vol. 309, no. 6947, 1994.
BIML, “Test Statistics,” 2017. [Online]. Available: http://groups.bme.gatech.edu/groups/biml/resources/useful_documents/Test_Statistics.pdf. [Accessed: 19-Jun-2017].
Garson and G. David, “Interpreting neural-network connection weights,” AI Expert, vol. 6, no. 4, pp. 46–51, 1991.
Y.-W. Chang and C.-J. Lin, “Feature Ranking Using Linear SVM,” in JMLR: Workshop and Conference Proceedings 3, 2008, pp. 53–64.
K. Subbian and P. Melville, “Supervised Rank Aggregation for Predicting Influencers in Twitter,” in 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, 2011, pp. 661–665.