DATA ANALYTICS OF BUILDING AUTOMATION SYSTEMS: A CASE STUDY

GULUSTAN DOGAN

Abstract

In today’s technology, when costs of time, energy and human resources are considered, efficient use of resources provides significant advantages over many aspects. In light of this, role of building automation systems, which are a part of smart cities, become even more important. At the very core of building automation systems there lies the efficient use of resources and systems for providing comfortable living situations. With the advancement in network technology, systems can be programmed smartly and any malfunctions on the systems can be detected and fixed remotely. In addition to that, all data gathered during this process can be analyzed to create machine learning solutions for a system to control and program itself. In this work, we pulled the sensor data and developed an interface to do analysis. Our aim is to understand how the system behaves. This interface will be the basis of our work on developing machine learning algorithms to predict system behaviour for programming the system for energy.

Keywords

Building Automation Systems; Smart Systems; Smart Buildings

Full Text:

PDF
Submitted: 2017-10-04 17:07:53
Published: 2018-06-29 14:38:55
Search for citations in Google Scholar
Related articles: Google Scholar

References

Çimen, L., (2005) Bina Otomasyon Sistemleri, Türk Tesisat Mühendisleri Derneği Dergisi.

Karaca, H., (2002) Otomatik Kontrol Ve Otomasyon Sistemlerinin Vazgeçilmez Elemanları: Sensörler, Türk Tesisat Mühendisleri Derneği Dergisi.

Ercan, M. S. (2009), Bina Otomasyon Sistemleri İle Devreye Alma İşlemleri , Ix.Ulusal Tesisat Mühendisliği Kongresi, 1121-1127.

Yılmaz, Z. (2005). Akıllı Binalar Ve Yenilenebilir Enerji. Teskon Konferansı, İzmir.

Teknokulis. 01.03.2016.Türkiye Akıllı Şehirler Değerlendirme Raporu Yayınlandı.

Erişim :31 Mayıs 2016

Kaşıkçı,S.(2015). Sensörler. Slideplayer. < http://slideplayer.biz.tr/slide/2792904/>. Erişim:31 Mayıs 2017

Necoinside. (2015). Ds18b20 Dijital Sıcaklık Sensörü.. Erişim:31 Mayıs 2017

Günacar, G. ( 2011). Türkiye Ve Dünyada Akıllı Binalar. Erişim 31 Mayıs 2016

Utkutuğ, G. (2011), Sürdürülebilir Bir Geleceğe Doğru Mimarlık Ve Yüksek Performanslı Yeşil Bina Örnekleri.

Kırmızıoğlu, E. (2014). Ülkemizin 2023 Stratejik Vizyonu Doğrultusunda Akıllı Şebekeye Geçilmesi İçin Öneriler. 2. Uluslararası İstanbul Akıllı Şebekeler Kongre Ve Fuarı . 143-147.

Civan, U. (2015) Akıllı Binaların Çevresel Sürdürülebilirlik Açısından Değerlendirilmesi. Diss. Fen Bilimleri Enstitüsü.

Gazioglu, A. ,Akşit,Ş.F. ,Manioğlu,G. (2013). Enerji Etkin Bina Tasarımında Isıtma Enerjisi Tüketimini Azaltmaya Yönelik Bir İyileştirme Çalışması

Manioğlu, G.(2007). Geleneksel Mimaride İklimle Uyumlu Binalar: Mardin'de Bir Öğrenci Atölyesi, Vııı. Ulusal Tesisat Mühendisliği Kongresi Ve Sergisi, 79-92

Yılmaz, Z.(2006).Akıllı Binalar Ve Yenilenebilir Enerji, Tesisat Mühendisliği Dergisi,91,7-15.

Canbay, C.S. , Akkurt, G.G. , Hepbaşlı,A. (2003), Bina Yönetim Sistemleri Ve Hvac Sistemlerinde Enerji Tasarrufuna Yönelik Kontrol İlkeleri, Vı. Ulusal Tesisat Mühendisliği Kongresi Ve Sergisi, 653-671

Karaca, H. , Otomatik Kontrol Ve Otomasyon Sistemlerinin Vazgeçilmez Elemanları: Sensörler, Türk Tesisat Mühendisleri Derneği Dergisi.

Cai, J. and Braun, J. (2012) “Efficient And Robust Training Methodology For Inverse Building Modeling And Its Application To A Multi-Zone Case Study” International High Performance Buildings Conference, Paper 98. http://docs.lib.purdue.edu/ihpbc/98

Inno, Y. and Masakiko, M. (2013) “Physical And Jit Model-Based Hybrid Modeling Approach For Thermal Load Prediction” Electrical Engineering In Japan V.85 No.2

Zhou, Q. And Shangwei, W. (2008) “A Greybox Model Of Next-Day Building Thermal Load Prediction For Energy Efficiency Control” International Journal Of Energy Research V.32 1418-1431

Oldewurtel, F. And Andreas, U. (2010) Reducing Peak Electricity Demand In Building Climate Control Using Real-Time Pricing And Model Predictive Control. Proceedings Of The Ieee

Oldewurtel, F. And Alessandra, P. (2012) “Use Of Model Predictive Control And Weather Forecasts For Energy Efficienct Building Climate Control” Energy And Buildings V.45 15-27

Li, P., O’neill, Z. and Braun, J. (2013) “Development Of Control-Oriented Models For Model Predictive Control In Buildings” Ashrae.

Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586-3592.

Abstract views:
73

Views:
PDF
92




Copyright (c) 2018 International Journal of Intelligent Systems and Applications in Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
© Prof.Dr. Ismail SARITAS 2013-2018     -    Address: Selcuk University, Faculty of Technology 42031 Selcuklu, Konya/TURKEY.